Experimental investigation on mechanical behavior of as cast Zn-Al-Cu/SiC/TiB<sub>2</sub> hybrid metal matrix composite by ultrasonic assisted stir casting technique

نویسندگان

چکیده

Abstract Now a days, the Zn-Al-Cu alloy-based composites have great impact on modern trends for bearing applications because of its reliable mechanical performance. In this paper characteristics as cast hybrid metal matrix been investigated, well influence reinforcements Silicon Carbide (SiC) and Titanium Diboride (TiB 2 ) composite. The ultrasonic assisted stir casting technique has adopted fabricating with addition dual like 5 wt% SiC constant by varying TiB 0 wt%, 10 wt%. ceramic particles are taken 20 30 microns in size. ASTM standards were used to conduct different tests, findings demonstrate significance adding alloy also noticeable increase performance terms hardness, tensile strength, young’s modulus strength. As Zn-Al-Cu/5 wt.% SiC/10 composite gives minimum density 4.79 g cc −1 maximum hardness 156Hv.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Hexagonal Boron Nitrate on Microstructure and Mechanical Behavior of Al7075 Metal Matrix Composite Producing by Stir Casting Technique

Al7075 alloy reinforced with h-Boron Nitrate (BN) composites were processed by stir casting technique. The produced composite was subjected to microstructural studies using OLYMPUS -BX51M, tensile, hardness, density and wear tests. Tensile strength and hardness were found to increase by 12.8% and 20% respectively due to increased dislocation density with the addition of reinforcement. Microstru...

متن کامل

Influence of Nano Reinforced Particles on the Mechanical Properties of Aluminium Hybrid Metal Matrix Composite Fabricated by Ultrasonic Assisted Stir Casting

During the past few decades, materials design has shifted emphasis to pursue low cost, quality, light weight, environment friendliness, and performance. Aluminium matrix composites are important class of engineering materials used in aerospace, automotive, engineering, defence and other industries because of their lower density, higher specific strength, and better physical and mechanical prope...

متن کامل

Study on Iraqi bauxite ceramic reinforced Aluminum metal matrix composite synthesized by stir casting

For the past decades researchers are showing immense interest to investigate the natural advantage of preparation of composites from minerals such as bauxite particles, and proved their effectiveness as cost effective reinforcing agents in fabrication of high performance composites. This study, is a new attempt in using the Iraqi natural bauxite powder with different proportions (2wt%, 4wt%, an...

متن کامل

Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite

The welding of materials by applying Friction Stir Welding technique is a new solid-state joining technique. The main advantage of this method compared to the traditional joining process is that it minimizes problem-related to metal resolidification as the method incorporates no melting phase. In this experimental work, the effect of friction stir welding (FSW) technique on the microstructu...

متن کامل

Experimental Investigation of Mechanical and Tribological Properties of Al-sic and Al-gr Metal Matrix Composite

This Investigation studies the Mechanical and Tribological behaviour [ i.e dry sliding behaviour] of Al matrix composites reinforced with SiC and Gr particulate up to 10%, to study the effect of reinforcement, Load, Sliding speed and Sliding distance on stir cast Al-SiC and Al-Gr Metal matrix composites. Parametric studies indicate that the hardness, tensile strength of Al-SiC composite is grea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering research express

سال: 2022

ISSN: ['2631-8695']

DOI: https://doi.org/10.1088/2631-8695/ac71f7